2 research outputs found

    Subtle interactions for distress regulation: efficiency of a haptic wearable according to personality

    Full text link
    The incorporation of empathic systems in everyday life draws a lot of attention from society. Specifically, the use of wearables to perform stress regulation is a growing field of research. Among techniques explored, the haptic emulation of lowered physiological signals has been suggested to be promising. However, some discrepancies remain in empirical research focusing on such biofeedback (BF) regarding their efficacy, and the mechanisms underlying the effects of these wearables remains unclear. Moreover, the influence of individual traits on the efficiency of BF has been marginally studied, while it has been shown that personality could impact both stress and its regulation. The aim of this study is to investigate the outcome of interactions with these technologies from a psycho-physiological standpoint, but also to explore whether personality may influence its efficiency when other interaction devices are present. Participants had to play a challenging game while a lowered haptic BF of their heart rate was induced on their wrist. Results showed variable efficiency of the wearable among the participants: a subjective relaxation was evident for the participants exhibiting the highest neurotic and extraverted traits score. Our results highlight the plurality of the modes of action of these techniques, depending on the individual and on the level of stress to regulate. This study also suggests that tailoring these regulation methods to individual characteristics, such as personality traits, is important to consider, and proposes perspectives regarding the investigation of stress and regulation systems embedded in wearables

    Towards Mindless Stress Regulation in Advanced Driver Assistance Systems: A Systematic Review

    No full text
    Background: Stress can frequently occur in the driving context. Its cognitive effects can be deleterious and lead to uncomfortable or risky situations. While stress detection in this context is well developed, regulation using dedicated advanced driver-assistance systems (ADAS) is still emergent.Objectives: This systematic review focuses on stress regulation strategies that can be qualified as ?subtle? or ?mindless?: the technology employed to perform regulation does not interfere with an ongoing task. The review goal is 2-fold: establishing the state of the art on such technological implementation in the driving context and identifying complementary technologies relying on subtle regulation that could be applied in driving.Methods: A systematic review was conducted using search operators previously identified through a concept analysis. The patents and scientific studies selected provide an overview of actual and potential mindless technology implementations. These are then analyzed from a scientific perspective. A classification of results was performed according to the different stages of emotion regulation proposed by the Gross model.Results: A total of 47 publications were retrieved, including 21 patents and 26 studies. Six of the studies investigated mindless stress regulation in the driving context. Patents implemented strategies mostly linked to attentional deployment, while studies tended to investigate response modulation strategies.Conclusions: This review allowed us to identify several ADAS relying on mindless computing technologies to reduce stress and better understand the underlying mechanisms allowing stress reduction. Further studies are necessary to better grasp the effect of mindless technologies on driving safety. However, we have established the feasibility of their implementation as ADAS and proposed directions for future research in this field
    corecore